Osteoblastic NF-κB pathway is involved in 1α, 25(OH)2D3-induced osteoclast-like cells formation in vitro.

نویسندگان

  • Lin Cong
  • Chaoyi Zhang
  • Guanjun Tu
چکیده

1α, 25-dihydroxyvitamin D3 (1α, 25(OH)2D3) acts on the osteoblasts to enhance the expressions of receptor activator of nuclear factor κB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF) and induce the formation of osteoclasts. However, the mechanism in osteoblasts by which 1α, 25(OH)2D3 promotes osteoclastogenesis has not yet been completely understood. This study aimed to select the first generation of murine osteoblasts to explore the underlying mechanism of 1α, 25(OH)2D3-induced osteoclastic formation from bone marrow mononuclear cells (BMMNCs). We discovered the activation of osteoblastic NF-κB pathway under 10(-8) mol/L 1α, 25(OH)2D3 treatment, as evidenced by the transfer of NF-κB p65 from cytoplasm to nuclei. Then, the NF-κB p65-siRNA was designed, constructed, and transfected into osteoblastic cells. Immunofluorescence assay confirmed the successfully silenced NF-κB p65 gene in osteoblasts. In the co-culture system of osteoblasts and BMMNCs with 1α, 25(OH)2D3 added, the multinucleated osteoclast-like cells containing 2-3 nuclei were observed in BMMNCs co-cultured with non-transfection osteoblasts, conversely, silencing osteoblastic NF-κB p65 resulted in failed differentiation of BMMNCs along with substantial vacuolar degeneration in cytoplasm. In addition, the expressions of RANKL and M-CSF were notably decreased in NF-κB p65-silenced osteoblasts. Taken together, our data indicated that osteoblastic NF-κB pathway was involved in 1α, 25(OH)2D3-induced osteoclast-like cells formation from BMMNCs through regulating the expression of RANKL and M-CSF. Therefore, our findings further identified the mechanism of 1α, 25(OH)2D3-induced osteoclastogenesis on the basis of prior studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RUNX2 Mutation Impairs 1α,25-Dihydroxyvitamin D3 mediated Osteoclastogenesis in Dental Follicle Cells

Cleidocranial dysplasia (CCD), a skeletal disorder characterized by delayed permanent tooth eruption and other dental abnormalities, is caused by heterozygous RUNX2 mutations. As an osteoblast-specific transcription factor, RUNX2 plays a role in bone remodeling, tooth formation and tooth eruption. To investigate the crosstalk between RUNX2 and 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) in human ...

متن کامل

Vitamin D endocrine system and osteoclasts

Vitamin D was discovered as an anti-rachitic agent preventing a failure in bone mineralization, but it is now established that the active form of vitamin D3 (1α,25(OH)2D3) induces bone resorption. Discovery of the receptor activator of nuclear factor -κB ligand (RANKL) uncovered the molecular mechanism by which 1α,25(OH)2D3 stimulates bone resorption. Treating osteoblastic cells with 1α,25(OH)2...

متن کامل

Kruppel-like factor 4 attenuates osteoblast formation, function, and cross talk with osteoclasts

Osteoblasts not only control bone formation but also support osteoclast differentiation. Here we show the involvement of Kruppel-like factor 4 (KLF4) in the differentiation of osteoclasts and osteoblasts. KLF4 was down-regulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in osteoblasts. Overexpression of KLF4 in osteoblasts attenuated 1,25(OH)2D3-induced osteoclast differentiation in co-culture...

متن کامل

Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors.

The mechanism of action of macrophage colony-stimulating factor (M-CSF) in osteoclast development was examined in a co-culture system of mouse osteoblastic cells and spleen cells. In this co-culture, osteoclast-like multinucleated cells (MNCs) were formed within 6 d in response to 10 nM 1 alpha,25(OH)2D3 added only for the final 2 d of culture. Simultaneously adding hydroxyurea for the final 2 ...

متن کامل

Regulation of matrix metalloproteinase-9 protein expression by 1α,25-(OH)2D3 during osteoclast differentiation

To investigate 1α,25-(OH)₂D₃ regulation of matrix metalloproteinase-9 (MMP-9) protein expression during osteoclast formation and differentiation, receptor activator of nuclear factor kB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) were administered to induce the differentiation of RAW264.7 cells into osteoclasts. The cells were incubated with different concentrations of 1α,25...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of clinical and experimental pathology

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2015